INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG/M53506
April 2020, Alpbach (AT) Virtual

	Source
	Philips

	Status
	Input document

	Title
	MIV CE-1.1.1 related: HEVC multiplexing

	Author
	Bart Kroon, Bart Sonneveldt

Abstract
TMIV 4.0 will use separate GVD and AVD sub bitstreams with HM used as a separate executable. This contribution will provide a tool to multiplex and demultiplex a complete video bitstream in to a 3VC sample stream.
Introduction
Only part of the work has been performed so far. Multiplexing the sub bitstreams into the MIV bitstream is an easy task, but we are concerned that the MivDecoder needs a redesign step based on the discussions during the MPEG 130 meeting. We prefer to take some more time to consider that.

We contribute an important and substantial building block: an extensible video decoder interface with HEVC implementation based on HM. This allows TMIV to support the HEVC_Main10 codec group from V3C [N18089].

This contribution adds the following CMake modules to the TMIV project:

· VideoDecoderLib	(to be used by MivDecoder)
· VideoDecoder		(not built by default)
· TLibDecoder		(part of HM, private dependency of VideoDecoderLib)
· TLibCommon		(part of HM, public dependency of TLibDecoder)
· All other HM 16.16 libraries and executables (why not)

TMIV provides build files for HM but does not include HM itself. This will allow us to move to newer HM 16.x versions without modifying TMIV.

The support for HM is made optional and can be controlled from the CMake GUI. We believe that HM should always be used for CTC conditions, but we have made HM optional to demonstrate how another video decoder should be added. It is also possible to build the HM encoder library and executables from within the TMIV project but this is turned off by default because it is not yet used and it increases build time.

Special care has been taken to avoid displaying clang-tidy and compiler warnings within TLibDecoder and TLibCommon while preserving all diagnostics for TMIV code. The provided branch of TMIV has zero warnings and errors on Clang, GCC and VC15.
Code changes
The section provides a short description of the additions to TMIV.
IVideoDecoder
The IVideoDecoder is the video decoder interface using a push mechanism. See below for a usage example.

IVideoDecoder::create is a factory method that creates a video decoder based on the codec group IDC value. Only HEVC_Main10 is supported by the current implementation but more codecs could be added later.

class IVideoDecoder {
public:
 // (...)

 static auto create(TMIV::MivBitstream::PtlProfileCodecGroupIdc codecGroupIdc)
 -> std::unique_ptr<IVideoDecoder>;

 using FrameListener = std::function<void(const Common::AnyFrame &)>;

 virtual void decode(std::istream &stream) = 0;
 virtual void addFrameListener(FrameListener listener) = 0;
};
VideoServer class
The VideoServer uses a thread to change from push to pull mechanism. This may be useful depending on the MivDecoder design.

class VideoServer {
public:
 explicit VideoServer(
 std::unique_ptr<IVideoDecoder> decoder,
 std::string bitstream);
 // (...)

 // Get the next frame. If there are no more frames the result will be empty.
 auto getFrame() -> std::unique_ptr<Common::AnyFrame>;

 // (...)
};
HmVideoDecoder
This IVideoDecoder implementation is a front end for the HM library. The implementation is based on TAppDec.cpp (HM) with all parameters fixed to default values. The source file is under 300 lines long and because it uses TLibDecoder (HM) in the most basic way it is likely to function for future versions of the HM project.
VideoDecoder application
This application is not built by default but could be used instead of TAppDec with default parameters. We have created this tool only to test and demonstrate the use of VideoDecoderLib:

auto decoder = IVideoDecoder::create(*codecGroupIdc);

ifstream in{*bitstreamPath, ios::binary};
ofstream out{*reconstructionPath, ios::binary};

decoder->addFrameListener([&out](const AnyFrame &picture) {
 auto frame = picture.as<YUV420P10>();
 frame.dump(out);
});
decoder->decode(in);
AnyFrame
We have added a type that allows for runtime frame type handling. We use this type to shuttle frame data out of HM and into TMIV. This type could also be used in the TMIV::IO library.

struct AnyFrame {
 AnyFrame() = default;

 // Convert from any specific format
 template <typename FORMAT> explicit AnyFrame(const Frame<FORMAT> &frame);

 // Convert to any specific format
 template <typename FORMAT> auto as() const -> Frame<FORMAT>;

 static constexpr int maxPlanes = 4;
 std::array<Mat<uint32_t>, maxPlanes> planes{};
 std::array<uint8_t, maxPlanes> bitdepth{};
};
[bookmark: _Ref37770702]TMIV build and installation instructions
This informative section describes how to build the TMIV branch to this input document. The following steps collect the software projects in a main working directory, arbitrary called /Workspace in this description. Other directory names are also not more than examples.

The proposed TMIV has the following dependencies:
· Catch2 test framework (optional)
· HEVC Model (HM)
Prerequisites to follow this instruction
The description works for Windows and Linux.

· C++17 compiler and build tools
· CMake 3.10 or newer
· Git and SVN command tools:
· Linux: part of the distribution
· Windows: install Git for Windows with CLI tools
Instructions to build and install Catch2
Catch2 is optional but highly recommended. Clone a recent version of Catch2 to enable the tests:
cd /Workspace
git clone https://github.com/catchorg/Catch2.git
cd Catch2
git checkout v2.11.1
Open the CMake GUI and specify:

· Where is the source directory: /Workspace/Catch2
· Where to build the binaries: /Workspace/Catch2/build
· Click Configure, Yes, Finish
· Set CMAKE_INSTALL_PREFIX to /Workspace/Catch2-2.11.1
· Click Generate

Build and install the generated project.
Instructions to download HM
Look in the CTC document for the version of HM and corresponding URL. This description uses 16.16 which is in line with the current CTC [N18997].
cd /Workspace
svn co https://hevc.hhi.fraunhofer.de
/svn/svn_HEVCSoftware/tags/HM-16.16
TMIV includes a build script for HM.
Instructions to build and install TMIV
To obtain the branch to this document:
cd /Workspace
git clone http://mpegx.int-evry.fr
/software/MPEG/MIV/RS/TM1.git
cd TM1
git checkout m53506
To obtain the latest release of TMIV instead:
cd /Workspace
git clone https://gitlab.com/mpeg-i-visual/tmiv.git
Open the CMake GUI and specify:

· Where is the source directory: /Workspace/TM1
· Where to build the binaries: /Workspace/TM1/build
· Click Configure, Yes, Finish
· Set CMAKE_INSTALL_PREFIX to /Workspace/TM1-m53506
· Set Catch2_DIR to /Workspace/Catch2-v2.11.1/lib/cmake/Catch2
· Set HM_SOURCE_DIR to /Workspace/HM-16.16
· Click Generate

Depending on the OS and CMake version, the CMake GUI may look somewhat like Figure 1.

Build and install the generated project.

After this the TMIV executables Encoder and Decoder will be available under the directory /Workspace/TM1-m53506/bin. By default TMIV only builds the HM modules that are required for TMIV (TLibCommon and TLibDecoder). When HM_BUILD_TAPPDECODER and HM_BUILD_TAPPENCODER are selected, then the TAppDecoder and TAppEncoder tools respectively will also be installed to this directory.

[image:]
[bookmark: _Ref37768988]Figure 1: CMake GUI example
Known bugs
[bookmark: _GoBack]The output is shifted (Figure 2). Probably we should have taken into account the conformance window. it will anyway be something small and we promise to fix this later.
[image:]
[bookmark: _Ref38108874]Figure 2: Known bug: the output is shifted
Conclusions and Recommendations
We recommend that TMIV 5 encodes and decodes a single bitstream with all atlas and video data as sub bitstreams.

We recommend that the provided code is used as a building block for that.

We recommend that Section 3 TMIV build and installation instructions is added as a new section of the to-be-created TMIV-SW documentation.
image1.png

image2.png

