

Breast MRI

Dr M Telesca Consultant Radiologist Worcestershire Acute Hospitals NHS Trust **Position Paper**

7.

Magnetic resonance imaging of the breast: Recommendations from the EUSOMA working group

Francesco Sardanelli^{a,*}, Carla Boetes^b, Bettina Borisch^c, Thomas Decker^d, Massimo Federico^e, Fiona J. Gilbert^f, Thomas Helbich^g, Sylvia H. Heywang-Köbrunner^h, Werner A. Kaiserⁱ, Michael J. Kerin^j, Robert E. Mansel^k, Lorenza Marotti^I, Laura Martincich ^m, Louis Mauriac ⁿ, Hanne Meijers-Heijboer ^o, Roberto Orecchia ^p, Pietro Panizza⁹, Antonio Ponti^r, Arnie D. Purushotham^s, Peter Regitnig^t, Marco Rosselli Del Turco¹, Fabienne Thibault⁴, Robin Wilson^v

YES

YES

YES

- 1. Staging (preop MRI)
- 2. Screening high-risk women
- 3. Evaluation of response to NAC YES
- **4**. Augmentation or reconstruction YES (suspected implant rupture)
- 5. **Occult primary breast cancer**
- 6. **Suspected local recurrence**
 - Equivocal findings at mammo/US Limited²

¹ ILC, high-risk, Mx/US size discrepancy, PBI

² When CNB/VAB cannot be performed

Recommended

- Invasive lobular carcinoma
- High risk patients
- Discordance in tumour size assessment (>1cm)
- ?Eligible for PBI

Evidence needed – creeping practice

- Dense breasts
- Involved/close margins
- Unilateral, unifocal pure DCIS
- (?synchronous invasive)
- Paget's disease

Preoperative Magnetic Resonance Imaging in Breast Cancer

Meta-Analysis of Surgical Outcomes

Nehmat Houssami, MBBS, PhD,* Robin Turner, PhD,* and Monica Morrow, MD†

Background and Objective: The role of breast magnetic resonance imaging (MRI) in women newly diagnosed with breast cancer (BC) is controversial. This meta-analysis examines the effect of preoperative MRI compared with standard preoperative assessment on surgical outcomes, focusing on studies that used a controlled design.

Methods: Using random-effects logistic meta-regression modeling, we estimated the proportion of women with each outcome in the MRI versus no-MRI groups, and calculated the odds ratio (OR) and adjusted OR (adjusted for study-level median age, and, where appropriate, for temporal effect) for each model.

Results: There were 9 eligible studies (2 randomized trials; 7 comparative cohorts). Outcomes in 3112 patients with BC (any histological tumor type) for MRI versus no-MRI (referent) were as follows: initial mastectomy 16.4% versus 8.1% [OR, 2.22 (P < 0.001); adjusted OR, 3.06 (P < 0.001)]; reexcision after initial breast conservation 11.6% versus 11.4% [OR, 1.02 (P = 0.87); adjusted OR, 0.95 (P = 0.71)]; overall mastectomy 25.5% versus 18.2% [OR, 1.54 (P < 0.001); adjusted OR, 1.51 (P < 0.001)]. In 766 patients with invasive lobular cancer (ILC), outcomes were as follows: initial mastectomy 31.1% versus 24.9% [OR, 1.36 (P = 0.056); adjusted OR, 2.12 (P = 0.008)]; re-excision after initial breast conservation 10.9% versus 18.0% [OR, 0.56 (P = 0.031); adjusted OR, 0.56 (P = 0.09)]; overall mastectomy 43.0% versus 40.2% [OR, 1.12 (P = 0.45); adjusted OR, 1.64 (P = 0.034)].

Conclusions: Our summary of the evidence showed that MRI significantly increased mastectomy rates and suggests an unfavorable harm-benefit ratio for routine use of preoperative MRI in BC. We found weak evidence that MRI reduced re-excision surgery in patients with ILC —although this was at the expense of increased mastectomies—and overall patient benefit from MRI in ILC is not clear from this study.

9 studies (2 randomized, 7 comparative) all using a controlled study design

3112 patients with BC

MRI impact on short term surgical outcomes only

 Contralateral preop-MRI depicted 25 (1.4%) additional cancers

Two avid nodules in the R breast. Patient referred for triple assessemnt in the breast clinic

Suspected right lower lobe carcinoid with obstructive atelectasis

US guide core: G3 IDC

Acute Hospitals NHS Trust

Multicentric disease: mastectomy

INVASIVE LOBULAR CARCINOMA

MRI	83-100%
Mx	57–81%
US	68–87%

MRI sensitivity for detecting ILC is superior to MX and US

Brem RF, Am J Roentgenol 2009;192:379–83. Mann RM. Breast Cancer Res Treat 2008;107:1–14.

Breast Cancer Res Treat (2010) 119:415-422 DOI 10.1007/s10549-009-0616-6

CLINICAL TRIAL

The impact of preoperative breast MRI on the re-excision rate in invasive lobular carcinoma of the breast

R. M. Mann · C. E. Loo · T. Wobbes · P. Bult · J. O. Barentsz · K. G. A. Gilhuijs · C. Boetes

Table 3 Rate of re-excisions and mastectomies in the entire study population

	MR-(N = 168)	MR + (N = 99)	P value	
Re-excisions	25 (15)	5 (5)	0.014	1
Initial mastectomies	78 (46)	44 (45)	0.753	
Final mastectomies	99 (59)	48 (48)	0.098	

Numbers between parenthesis represent percentages

Table 4 Results in the subset of patients that initially underwent BCS

	MRI-	MRI+	P value
Ν	90	55	
Mean tumor size (cm)	2.1 ± 1.4	2.0 ± 1.4	0.724
Multifocal	37 (41)	19 (34)	0.431
Re-excisions	24 (27)	5 (9)	0.010
Final mastectomies	21 (23)	4 (7)	0.013

Numbers between parenthesis represent percentages

Annual MRI as screening test to selected population:

- •High risk = >20 30% lifetime risk
- •Genetic/family history
- •Previous high dose RT
- •Prior to risk reducing mastectomy within 3/12

0.3 -

0.2 -0.1 -

0.0

0.0

0.2

0.4

0.6

1 - Specificity

MRI × XM+US XM+MRI

XM+US+MRI

0.8

1.0

HIBCRIT-1

Modality	Sensitivity %	Specificity %	PPV2 %	NPV %	
CBE	17.6	99.4	60.0	96.1	
Mammography	y 50.0	99.1	73.5	97.6	
US	52.0	99.2	76.5	97.7	18 contors
MRI	91.3 *	97.4	61.8	99.6 *	501 women
Mam + US	62.5	98.4	65.2	98.2	1592 rounds
MRI + Mammo	93.2	97.0	58.6	99.7	10-
MRI + US	93.3	97.1	60.0	99.7	09- 08-
			* Stat sig	nificant	0.7
Sensitivity	for pT1a-b		Ũ		Annti us MRI

Sensitivity for pT1a-b			
Mammo & US	10/20	50%	
MRI	18/19	95%	

Sardanelli F et al. Invest Radiol 2011

SCREENING FOR HIGH RISK PATIENTS

VOLUME 32 · NUMBER 22 · AUGUST 1 2014

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Abbreviated Breast Magnetic Resonance Imaging (MRI): First Postcontrast Subtracted Images and Maximum-Intensity Projection—A Novel Approach to Breast Cancer Screening With MRI Christiane K. Kuhl, Simone Schrading, Kevin Strobel, Hans H. Schild, Ralf-Dieter Hilgers, and Heribert B. Bieling

-prospective observational study in 443 who underwent 606 screening MRIs.

- -17 minutes versus 3 minutes MRI reading protocol
- -11 breast cancers were diagnosed. Median tumor sixe of 8.4 mm.

-MIP readings were positive in 10 (90.9%) of 11 cancers, with a negative predictive value (NPV) of 99.8% (418 of 419).

Conclusion

An MRI acquisition time of 3 minutes and an expert radiologist MIP image reading time of 3 seconds are sufficient to establish the absence of breast cancer, with an NPV of 99.8%. With a reading time < 30 seconds for the complete AP, diagnostic accuracy was equivalent to that of the FDP and resulted in an additional cancer yield of 18.2 per 1,000.

VOLUME 32 - NUMBER 22 - AUGUST 1 2014

JOURNAL OF CLINICAL ONCOLOGY

EDITORIAL

SCREENING FOR HIGH RISK PATIENTS

Rethinking Breast Cancer Screening: Ultra FAST Breast Magnetic Resonance Imaging

Elizabeth A. Morris, Memorial Sloan Kettering Cancer Center, New York, NY

44 yo BRCA 1 carrier G2 IDC

50yo BRCA carrier Annual screening

0cm

4D-TRAK XD

Field strength	1.5T, 3.0T.
Main applications	Anglography.
Sequence	Dynamic contrast-enhanced MR Angiography.
Maps	MIP's of multiple phases.
Speed	Leverages the efficient dS SENSE parallel imaging technology to provide superior speed performance. ¹ High spatial and temporal resolution, simultaneously.
Image quality	Optimal signal-to-noise due to dStream's digitization at the patient.

1 Compared to first generation SENSE.

4D Time-Resolved Angiography using Keyhole

fast, dynamic contrast-enhanced MR Angiography method with flexible sampling of both the arterial- and venous phase enabling high spatial and temporal resolution simultaneously European Journal of Radiology 89 (2017) 90–96

Contents lists available at ScienceDirect European Journal of Radiology

journal homepage: www.elsevier.com/locate/ejrad

Editorial Musings

Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions

CrossMark

Roel D. Mus^a, Cristina Borelli^{b,c,*,1}, Peter Bult^d, Elisabeth Weiland^e, Nico Karssemeijer^a, Jelle O. Barentsz^a, Albert Gubern-Mérida^a, Bram Platel^a, Ritse M. Mann^a

TWIST acquisition :102 s.

to compare TTE (time to enhancement) to conventional curve type evaluation as a classifier to discriminate between malignant and benign breast lesions.

THRIVE

4D TRAK

THRIVE

4D TRAK

Acute Hospitals NHS Trust

RESPONSE TO NEO-ADJUVANT CHEMOTHERAPY

Author	Correlation coefficient	P-value
Partridge et al.	0.89	< 0.001
Cheung et al.	0.982	< 0.001
Martincich et al.	0.72	< 0.001
Segara et al.	0.749	< 0.0001
Kim et al.	0.645	< 0.001
Moon et al.	0.584	NA
Wright et al.	0.49	NA
Park et al.	0.667	NA
Nakahara et al.	0.21	NS
Wang et al.	0.866	< 0.01
Dongfeng et al.	0.698	< 0.001
Fangberget et al.	0.87	< 0.001
Guarneri et al.	0.53	NS
Shin et al.ª	0.97	NA
Chen et al.	0.30	0.03
Kim et al.	0.619	< 0.0001
Shin et al. ^b	0.781	NA

NA not available, NS not significant

M Lobbes et al, Insight Imaging, 2013

Telesca M et al. Accuracy of 3T Magnetic Resonance imaging with a high-relaxivity contrast agent in assessing treatment response in patients undergoing NAC. ECR 2015

BREAST IMPLANTS EVALUATION

Extracapsular rupture

Worcestershire **NHS**

OCCULT BREAST CANCER

Worcestershire NHS Acute Hospitals NHS Trust

Worcestershire NHS Acute Hospitals NHS Trust

Equivocal findings at mammo/US

Case 1: screening patient

Targeted USS : U1

Invasive carcinoma type: Ductal with lobular features (E-cadherin positive on core biopsy) Grade: 2 Focality: unifocal Invasive tumour measurement: 10mm

CASE 2: screening patient

TIS0.1 MI 0.5

L17-5/BREAST PH

Philips Medical

R 43Hz

L

[w LCC]

R breast WLE : atypical ductal hyperplasia

S

[^w LML]

L breast therapeutic mammoplasty : grade 3 infiltrating duct carcinoma DCIS at the site of the posterior wire

CRITICISMS

Cost and limited access

•Technical (high-quality MR systems, dedicated breast coils, contrast agents)

Interpretation

•Clinical (treatment delay, unnecessary biopsy, etc..)

EVIDENCE-BASED INDICATION??

LONG TERM OUTCOMES??

TAKE HOME POINTS

- 1. Breast MRI has been increasingly used and investigated, and shows a great potential for the future
- 2. Breast MRI has not only high sensitivity but also good specifity
- 3. Breast MRI entered the high-risk screening but controversy on indications will continue, especially for the preoperative setting
- 4. Breast MRI is a valid technique in assessing response to NAC
- 5. Breast MRI may expand its role from diagnosis to prognosis

-Increased access to the modality

-implementation of new protocols

-Interaction between clinicians

-High quality research

