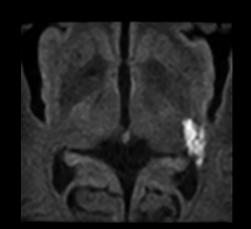
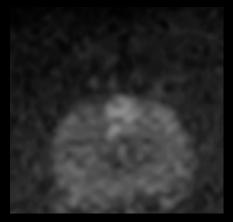

Small FOV diffusion imaging for improved image quality

Zoom Diffusion allows you to acquire small FOV imaging, down to 200 x 50 mm, with reduced geometrical distortion¹ and higher spatial resolution.²


Zoom Diffusion

Field strength	1.5T, 3.0T.
Main applications	Brain, Spine, Prostate. Also available for other anatomies.
Sequence	SE-EPI.
FOV	Enables small FOV imaging, down to 200 x 50 mm.
Speed	Leverages the efficient dS SENSE parallel imaging technology to provide superior speed performance. ¹
Image quality	Optimal signal-to-noise due to dStream's digitization at the patient. Reduced geometrical distortion ² and higher spatial resolution. ³


¹ Compared to first generation SENSE.

Zoom Diffusion - Spine (b0 and b1000) 2.5 x 2.5 x 3.0 mm, 3:45 min Ingenia 1.5T Courtesy: Kantonsspital Winterthur, Switzerland

Zoom Diffusion - Brain (b600) 1.2 x 1.2 x 3.0 mm, 5:40 min Ingenia 1.5T Courtesy: Kantonsspital Winterthur, Switzerland

Zoom Diffusion - Prostate (b1000) 1.9 x 1.5 x 4.0 mm, 3:49 min Ingenia 3.0T Courtesy: Kumamoto Chuo Hospital, Japan

² Due to reduced EPI echo train length in DWI-EPI compared to conventional Philips full FOV DWI-EPI.

³ Due to smaller acquisition voxel size compared to Philips full FOV DWI-EPI, with same level of geometrical distortion.