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ABSTRACT
◥

Endocrine therapy is important for management of patients
with estrogen receptor (ER)–positive breast cancer; however,
positive ER staining does not reliably predict therapy response.
We assessed the potential to improve prediction of response to
endocrine treatment of a novel test that quantifies functional ER
pathway activity frommRNA levels of ER pathway–specific target
genes. ER pathway activity was assessed on datasets from three
neoadjuvant-treated ER-positive breast cancer patient cohorts:
Edinburgh: 3-month letrozole, 55 pre-/2-week/posttreatment
matched samples; TEAM IIa: 3- to 6-month exemestane, 49
pre-/28 posttreatment paired samples; and NEWEST: 16-week
fulvestrant, 39 pretreatment samples. ER target gene mRNA levels
were measured in fresh-frozen tissue (Edinburgh, NEWEST) with
Affymetrixmicroarrays, and in formalin-fixed paraffin-embedded
samples (TEAM IIa) with qRT-PCR. Approximately one third of

ER-positive patients had a functionally inactive ER pathway
activity score (ERPAS), which was associated with a nonrespond-
ing status. Quantitative ERPAS decreased significantly upon ther-
apy (P<0.001Edinburgh andTEAMIIa). Responders had a higher
pretreatment ERPAS and a larger 2-week decrease in activity (P¼
0.02 Edinburgh). Progressive disease was associated with low
baseline ERPAS (P ¼ 0.03 TEAM IIa; P ¼ 0.02 NEWEST), which
did not decrease further during treatment (P ¼ 0.003 TEAM IIa).
In contrast, the staining-based ER Allred score was not signifi-
cantly associated with therapy response (P ¼ 0.2). The ERPAS
identified a subgroup of ER-positive patients with a functionally
inactive ER pathway associatedwith primary endocrine resistance.
Results confirm the potential of measuring functional ER pathway
activity to improve prediction of response and resistance to
endocrine therapy.

Introduction
Endocrine therapy is one of themainstays in treatment of both early

and metastatic breast cancer. Especially, the use of endocrine therapy
has resulted in increased survival rates (1–3). Patients are currently
selected for endocrine therapy using IHC analysis of estrogen receptor
(ER) and progesterone receptor (PR) expression (4). Both the Amer-
ican Society for Clinical Oncology and the European Society for
Medical Oncology advise a threshold of 1% ER-positive tumor

cells (5, 6). In practice, many clinicians and countries choose a
threshold of 10% (7). More quantifiable analyses like Allred scoring
and H-score have been developed and suggested for clinical applica-
tion, but are currently not routinely used (5).

Despite the success of endocrine therapy in ER-positive breast
cancer, up to half of patients do not show the expected response (8, 9).
In addition to cancer tissue heterogeneity, several mechanisms have
been proposed to explain lack of therapy response, like emergence of
ESR1-activating mutations or activation of other signal transduction
pathways upon pharmacologic inhibition of the ER pathway (10, 11).
Standard IHC analysis detects the presence of nuclear ER protein.
However, to what extent positive nuclear ER staining indicates actual
functional activity of the ER pathway has not been addressed satis-
factorily. A test to predict response to endocrine therapy based on
measuring functional activity of the ERpathway is expected to improve
decision making regarding endocrine therapy and/or alternative
therapies (12).

A number of data-driven RNA-based tests have been developed to
assess recurrence risk and predict response to endocrine
therapy (8, 12–14). However, no test is available to measure functional
ER pathway activity. A knowledge-based Bayesian network compu-
tational model for the ER pathway has been developed to assess
functional activity of this pathway in tumor tissues (15, 16). The
model usedmRNAexpression levels of 27 high evidence target genes of
the ER transcription factor to infer the activation state of the ER
pathway. Earlier analysis using this ER pathway model showed that
only part of ER-positive patients had an active pathway, which was
associated with lower risk of relapse after adjuvant tamoxifen
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treatment (15). Here, we report results on use of this ER pathway
model to predict and assess response to endocrine therapy in patients
with ER-positive breast cancer treated in a neoadjuvant setting.

Materials and Methods
Cell line cultures and estradiol levels in breast cancer tissue

Stimulation experiments with 17b-estradiol (E2) andRNA isolation
of a panel of breast cancer ER-positive cell lines were performed by
BioDetection Systems (BDS). Cell lines were purchased by the ATCC,
and maintained in DMEM/F12 supplemented with 10% FBS. Experi-
ments were performed at passage nþ4 (CAMA1 and BT474), nþ12
(MCF7), and after thawing at an unknown passage for T47D. No extra
tests, besides ATCC authentication, were performed. Two days before
experiments, cells were seeded in 60-mm plates in DMEM/F12 with
charcoal stripped phenol red-free serum supplemented with nones-
sential amino acids and penicillin/streptomycin, at a density such that
75% to 90% confluence was obtained by the time of harvesting.
Medium was refreshed 24 hours before exposure to 1 nmol/L E2,
10 nmol/L E2, or DMSO (control) for 16 hours. Subsequently, cells
were harvested and RNA was extracted using the NucleoSpin RNA
Isolation Kit (Macherey-Nagel). Details on measurement of E2 con-
centrations in eight fresh-frozen ER-positive breast tissue samples
supplied by ErasmusMedical Center (Rotterdam, theNetherlands) are
given in Supplementary Material and in references (17, 18).

Affymetrix GeneChip microarrays
Affymetrix HGU133Plus2.0 GeneChip microarray analysis was

performed on the samples of the cell line experiments as described
before (15, 19). See Supplementary Methods for more details. Data
were deposited in GEO (GSE127760). All Affymetrix (CEL) data
(generated in this study or retrieved from GEO) were processed using
R (https://www.R-project.org) BioConductor affy and frma (20, 21)
packages.

Edinburgh breast cancer cohort
Datasets GSE10281 (22) andGSE20181 (14, 23) contain data from a

cohort of postmenopausal patients with large strongly ER-positive
(Allred score 5 or more) breast cancers recruited at the Edinburgh
Breast Unit. Patients underwent neoadjuvant treatment with 2.5 mg
daily letrozole for three months. Both sets contain data from fresh-
frozen biopsies with at least 20% tumor content. The Affymetrix
HGU133Plus2.0 GSE10281 (AffyP2 Edinburgh) dataset concerns 18
patients with samples collected at baseline and after three months of
treatment. The Affymetrix HGU133A GSE20181 (AffyA Edinburgh)
dataset contains gene expression data from biopsies of 62 patients
collected at baseline and after approximately two weeks and three
months of treatment. Clinical response was defined as tumor volume
reduction of at least 50%, assessed after three months using three-
dimensional ultrasound (14). Data from six patients were included in
both datasets (overlap).

NEWEST breast cancer cohort
Dataset GSE48905 (24) contains data from a multi-center phase II

study, in which postmenopausal women with operable, locally
advanced (T2, 3, 4b; N0-3; M0) ER-positive breast tumors were
randomized for neoadjuvant treatment with 500 mg or 250 mg
fulvestrant for 16 weeks.

Tumor core biopsies (fresh-frozen tissue) were obtained before start
of treatment and Affymetrix HGU133Plus2.0 microarrays were per-
formed. Tumor volumes were measured by three-dimensional ultra-

sound and clinical response was classified as complete response (CR,
disappearance of all lesions), partial response (PR, at least 65%
reduction in tumor volume), progressive disease (PD, at least 73%
increase in tumor volume), or stable disease (SD, none of the previous).

TEAM IIa breast cancer cohort
The Dutch TEAM IIa trial is a completed neoadjuvant phase II

prospective trial (25). Briefly, 102 patients with ER-positive (�50%
nuclear ER staining) breast cancer were randomized to receive 3 or
6-month neoadjuvant exemestane treatment. Because of slow accrual,
the study changed to single arm design consisting of 6-month therapy.
Standard clinicopathologic characteristics, including PR and HER2
status, were assessed. Pretreatment cancer tissue biopsies and post-
neoadjuvant treatment tumor resection specimens were collected and
analyzed retrospectively; all tissue samples were formalin-fixed par-
affin-embedded (FFPE). A total of 49 biopsy and 48 resection samples
were eligible for analysis, of which 28 samples were paired cases from
the same patient (Supplementary Fig. S1). Primary clinical outcome
was reduction in tumor size using RECIST 1.1 criteria assessed by
manual palpation.

LCM and RNA isolation for FFPE samples from TEAM IIa
Cancer tissue was separated from surrounding normal and stromal

tissue using laser capture microdissection (LCM) as described by
Espina and colleagues (26). See Supplementary Methods for more
details. In FFPE biopsy samples, low tumor content limited the amount
of available mRNA.

ER pathway models
The method used to develop the ER pathway model has been

described before (15). The model uses mRNA expression levels of ER
target genes measured in a tissue sample to infer the odds in favor of a
transcriptionally active ER transcription factor and, as a consequence,
odds in favor of an active ER pathway. A Bayesian network represent-
ing the ER pathway transcriptional program (Fig. 1; ref. 15) describes
(i) how target gene regulation depends on ER transcription complex
activity and (ii) how expression level intensities in turn depend on
regulation of the respective target genes. The network consists of three
types of nodes: (i) ER transcription complex activation node; (ii) target
gene regulation node, with states “down” and “up”; and (iii) expression
intensity level nodes, with states “low” and “high,” each corresponding
to an ER target gene. The previously described ER pathway model was
developed for analysis of Affymetrix HGU133Plus2.0 (AffyP2) data,
that is, target gene expression level nodes correspond to AffyP2 probe
sets (15). During ongoing development toward a diagnostic ER
pathway test to further improve the sensitivity and specificity of the
previously described ER pathwaymodel, an additional informative ER
target gene (PDZK1) was included (27, 28). Following measurements
of breast cancer tissue estrogen levels, the model was adjusted to
estradiol levels in breast tissue by recalibration on data from MCF7
cultures exposed to 1 nmol/L estradiol (E2) from GSE35428 (Table 1;
ref. 29), instead of 25 nmol/L E2 used to calibrate the original model
(Table 1; ref. 30). Agreement between the original and optimized
AffyP2model was assessed on a collection of 5,395 breast cancer tissue
and cell line samples (Supplementary Table S1). Sensitivity and
specificity were assessed on 421 breast cancer cell line samples with
well-established ER pathway activation state (Supplementary
Table S1). Subsequently, the sensitivity-optimized (1 nmol/L) ER
pathwaymodel was adapted for use on two othermRNAmeasurement
platforms, that is, Affymetrix HGU133A (AffyA) and 1-step qRT-
PCR.
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Adaptation of the ER pathway Bayesian network model between
AffyP2 and AffyA microarray platforms consisted of selecting probe
sets that were identical on both platforms and recalibrating on samples
measured on the respective platforms. For lack of probe availability in
the AffyA platform, nine probe sets and the CDH26 gene were
removed from the AffyA computational model. The resulting AffyA
model retained 50 probe sets, representing 27 of the 28 ER target genes.
Themodel was calibrated using Affymetrix HGU133AmRNA expres-
sion data from dataset GSE9936 (Table 1; ref. 31). For the qRT-PCR
platform, the 28-target gene ER pathway Bayesian network was
reduced to a smaller network containing the most informative target
genes from the AffyP2 model (15). The main reason for reducing the
number of target genes in the qRT-PCR–basedmodelwas intended use
on FFPE samples. To avoid multiplexing of qRT-PCRs leading to bad

qRT-PCR performance, multiple separate diagnostic grade qRT-PCRs
needed to be developed. Because frequently very small samples are
available from biopsy FFPE material (as in the TEAM IIa study), the
amount of RNA isolated from such samples is limiting with respect to
the number of qRT-PCRs that can be performed. For this reason, a
smaller selection of target genes was identified based on evidence of the
gene being a direct ER target gene, as well as their capacity to
differentiate between ER pathway inactive and active MCF7 cell
cultures. Subsequently, this selection was validated by comparing
inferred ER pathway activities obtained with the 28-gene Affymetrix
model to inferred activities obtained with a reduced Affymetrix model
adapted to this limited target gene set. Following this successful initial
validation step, qRT-PCR assays were developed and validated accord-
ing to standard procedures for each of the selected target genes and a
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Figure 1.

Schematic representation of ER path-
waymodel network. Left, schematic of
theAffymetrix HGU133A (AffyA)mod-
el network; only genes and probe sets
present in the AffyA platform were
kept. Center, node type description.
Right, schematic of TEAMII PCR mod-
el; qRT-PCR assays were developed
for a subset of target genes of the
AffyP2 model.

Table 1. Datasets used in this study.

Set Platform Use Set description Reference

GSE8597 AffyP2 Calibration of original 25 nmol/L
E2 AffyP2 model

MCF7 cell line treated with 25 nmol/L E2 (n ¼ 4) or DMSO
(n ¼ 4) for 24 hours.

(30)

GSE35428 AffyP2 Calibration of optimized 1 nmol/L
E2 AffyP2 model

MCF7 cell line treated with 1 nmol/L E2 (n ¼ 10) or ethanol
(n ¼ 10) for 24 hours.

(29)

GSE9936 AffyA Calibration of AffyA 6 nmol/L E2
model

MCF7 cell cultures treated with 6 nmol/L E2 (n ¼ 3) or
vehicle (n ¼ 3) for 24 hours.

(31)

BrCa cell line
calibration

qRT-PCRa Calibration of TEAMII PCR model MCF7 cell cultures treated with 1 nmol/L E2 (n ¼ 4) or
vehicle (n ¼ 4) for 16 hours.

This study

BrCa cell line test AffyP2 and
qRT-PCRa

Agreement between AffyP2 and
TEAMII PCR models

MCF7, T47D, CAMA1, and BT474 cell lines treated with 1
nmol/L E2, 10 nmol/L E2, or DMSO (control) for 16 h (n¼ 11
matching samples).

This study
(GSE127760)

GSE17700 AffyP2 and
AffyA

Agreement between AffyP2 and
AffyA models

Biological replicate samples from 16 patients with breast
cancer processed by both platforms in two different
institutions (n ¼ 16 � 2 matching samples).

AffyP2 Edinburgh
(GSE10181)

AffyP2 Evaluation of ERPAS decrease
during AI and agreement with
AffyA model

Biopsy samples of 18 patients of the Edinburgh cohort,
collected at baseline and after 3 months neoadjuvant
treatment with letrozole (n ¼ 18 � 2 correlation with AI;
n ¼ 6 � 2 agreement with AffyA model).

(22)

AffyA Edinburgh
(GSE20181)

AffyA Correlation with AI response data
and agreement with AffyP2
model

Biopsy samples of 55 patients of the Edinburgh cohort,
collected at baseline and after 3 months neoadjuvant
treatment with letrozole (n ¼ 55 � 3 correlation with AI;
n ¼ 6 � 2 agreement with AffyP2 model).

(14, 23)

TEAM IIa qRT-PCRa Correlation with AI therapy
response

Forty-nine biopsy and 48 resection samples (28 paired
samples) of the TEAM IIa cohort.

This study

NEWEST
(GSE48905)

AffyP2 Correlation with fulvestrant
response

Forty-two samples from patients treated for 16 weeks with
either 500 mg or 250 mg of the selective estrogen
receptor degrader fulvestrant.

(24)

Abbreviations: AffyA: Affymetrix HGU133A; AffyP2: Affymetrix HGU133Plus2.0.
aTEAMII PCR prototype plate.
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set of reference genes. A Bayesian computational qRT-PCR ER
pathway model (TEAMII PCR ER pathway model) was constructed
as described previously (15) and calibrated using the breast cancer cell
line calibration set (Table 1). Target gene mRNA expression values
from these cell line experiments were obtained as described below and
used as input to calibrate and validate this TEAMII PCR model. A
research use prototype qRT-PCR plate, containing reagents for per-
forming the qRT-PCR reactions, was used in this TEAM IIa study
(Molecular Pathway Dx, Philips, TEAMII PCR prototype plate). To
facilitate comparison between results obtained on different measure-
ment platforms, a normalized ER pathway activity score (ERPAS) was
computed for all models: The inferred odds in favor of an active ER
pathway were transformed into a (base 2) logarithmic scale and
normalized to scores ranging from 0 to 100, where 0 corresponds to
the lowest and 100 corresponds to the highest odds in favor of an active
ER pathway that a specific model can infer.

In summary, the new1nmol/L E2model forAffyU133P2.0 contains
the PDKZ1 gene in addition to the gene list described before (15). The
6 nmol/L E2 AffyA model lost one gene for which no probe sets were
available on the AffyA platform. For the qRT-PCR–based model, best
performing target genes identified using AffyU133P2.0 results were
selected for further development of the model toward a commercially
available diagnostic qRT-PCR–based ER pathway test (www.Philips.
com/Oncosignal).

Generation of ER target gene qRT-PCR expression data
Quantitative expression levels of target genes and reference genes

were determined using one-step qRT-PCR. See Supplementary Meth-
ods for more details. Normalized quantification cycle (Cq) values were
used as input for the TEAMII PCR ER pathway model. For the TEAM
IIa trial samples, inferred ERPASs were calculated in a blindedmanner
at Philips and returned to Leiden University Medical Center (Leiden,
the Netherlands) for correlation to therapy response.

DNA sequencing
Targeted sequencingwas used to performmutation analysis ofESR1

and PIK3CA genes on 28 available TEAM IIa resection samples with
either a paired biopsy sample or an ERPAS on the resection sample.
DNA was extracted from whole samples and, if possible, from macro-
dissected samples. See Supplementary Methods and ref. 32.

Evaluation of agreement between models
Agreement between ER pathway models was evaluated by corre-

lating activity scores obtained by the different models on identical
sample sets (Table 1). Linear relationship between inferred activity
scores was assessed by orthogonal regression, assuming equal resid-
ual variance. Agreement was assessed by Pearson correlation and
mean deviations (MD) from the fitted orthogonal regression line
were used as indication of the measurement error between two
models.

Statistical analysis
Statistical analysis was performed using R (https://www.R-project.

org) and SPSS 23.0 (IBM). Paired t tests were used to assess mean
decrease in ERPAS between baseline and posttreatment measure-
ments. c2 tests were used to assess association between outcome
categories and dichotomized ERPAS. Two sample t tests and ANOVA
were used to assess ERPAS and decrease in ERPAS association with
clinical outcome and baseline parameters. All tests assumed unequal
variance. Unless indicated otherwise, two-sided P values and 95%
confidence intervals (CI) are reported.

Results
Development and validation of ER pathway models

Optimization of the previously describedERpathwaymodel includ-
ed adjusting sensitivity to match estradiol (E2) levels present in breast
cancer tissue. For this, E2 levels weremeasured in tissue samples of ER-
positive breast cancers. Measured concentrations varied between 2.2
and 7 nmol/L E2 (Supplementary Table S2), in line with concentra-
tions reported by others (33, 34). The new AffyP2 ER pathway model
was calibrated on MCF7 breast cancer cells stimulated with 1 nmol/L
estradiol, which lies between E2 concentrations in normal breast
(<1 nmol/L) and in cancer tissue (7 nmol/L in this study). Results
obtained with this 1 nmol/L–calibrated ER model strongly correlated
with results obtained with the previously described 25 nmol/L–
calibrated ER model (15), corr ¼ 0.94, and showed the expected
increase in sensitivity (from 83% to 91%), without loss in specificity
(92%; Supplementary Figs. S2 and S3). The 1 nmol/L model was used
for analysis of AffyP2 datasets in this study. Because the ER pathway
models are measurement platform specific, the AffyP2 model was
adapted for use on AffyA and qRT-PCR data, as described in the
Materials and Methods section, and compared with the 1 nmol/L
AffyP2 referencemodel on sets of technical replicate samples (Table 1;
ref. 35). Results obtained with the AffyA model strongly correlated
with results obtainedwith the 1 nmol/L E2AffyP2model on the dataset
with 16 � 2 technical duplicates (corr ¼ 0.80, Supplementary
Fig. S4A). Differences in sample preparation protocols reduced the
correlation (corr ¼ 0.63, Supplementary Fig. S4B), illustrating the
importance of standardized sample preparation procedures (36, 37).
The TEAMII PCRmodel correlated well with the AffyP2 model on 11
technical duplicates (corr ¼ 0.83, Supplementary Fig. S5). MDs from
the fitted regression lines give an indication of the measurement error
between two methods and were similar when comparing the AffyP2 1
nmol/L model versus the AffyA and TEAMII PCRmodels and the two
AffyP2 models (MD ¼ 3.1, 5.6, and 2.3, respectively).

Functional ER pathway activity before and after neoadjuvant
endocrine treatment
Edinburgh cohort

For the AffyP2 Edinburgh cohort, ERPASs decreased significantly
upon letrozole treatment (41.6 vs. 28.4), mean decrease of 13.2 (CI ¼
9.7–16.8; paired t test P < 0.001; Fig. 2A). ERPAS at the start of the
treatment was positively correlated to decrease in ERPAS after three
months of therapy, indicating that the higher the baseline ER pathway
activity, the higher the decrease in ER pathway activity upon treatment
(corr¼ 0.88; Fig. 2B). Clinical response data were not available for this
cohort.

Similarly, in the AffyA dataset of the Edinburgh cohort
(Table 2; Fig. 3A and B), ERPAS decreased significantly between
baseline and two weeks (46.9 vs. 39, mean decrease of 7.9, paired t test
P < 0.001) and between baseline and threemonths of letrozole (46.9 vs.
39.5, mean decrease of 7.5, paired t test P < 0.001). No significant
difference in ERPAS was seen between two weeks and three months of
treatment, indicating an early andmaintained response to letrozole for
the patient group as a whole. Again, baseline ERPAS and decrease in
ERPAS were positively correlated, both after two weeks and three
months of treatment (corr ¼ 0.74 and 0.83, respectively, Fig. 3C
and D). In this cohort, clinical response data were available and both
baseline ERPAS and decrease in ERPAS after two weeks of letrozole
treatment were significantly higher in clinical responders to letrozole
than in nonresponders (P ¼ 0.02, Table 2; Fig. 3B and E). Upon
letrozole treatment, average ERPAS decreased in responders to the

ERPAS to Predict Response to Endocrine Therapy

AACRJournals.org Mol Cancer Ther; 19(2) February 2020 683

on February 13, 2020. © 2020 American Association for Cancer Research. mct.aacrjournals.org Downloaded from 

Published OnlineFirst November 14, 2019; DOI: 10.1158/1535-7163.MCT-19-0318 

http://www.Philips.com/Oncosignal
http://www.Philips.com/Oncosignal
http://www.Philips.com/Oncosignal
https://www.R-project.org
https://www.R-project.org
https://www.R-project.org
http://mct.aacrjournals.org/


same low activity score level of nonresponders and remained at such
level up to the 3-month measurement point (Fig. 3A, B, and F).

Using a threshold for ERpathway activity, as described before (15),
enables analysis at individual patient level with respect to clinical

response to letrozole. To evaluate the predictive value of theAffyAER
pathway activitymodel in anunbiasedway, a threshold of 42.7was set
prior to analysis. This value corresponds to an odds of 1:1, the point
where the inferred probability of the ER pathway being active is 50%.

Figure 2.

ERpathway activity scores significant-
ly decreased following aromatase
inhibitor treatment. Scores on AffyP2
Edinburgh dataset (GSE10281, n ¼ 18)
were calculated using the 1 nmol/L E2
AffyP2 model. A, Individual patients’
line plots of ER pathway activity
scores at baseline and at 3 months
(mean decrease ¼ 13.2; 95% CI, 9.7–
16.8; ��� indicates paired t test P <
0.001). B, ER pathway activity score
at baseline versus decrease in activity
score after 3 months of therapy
(corr ¼ 0.88; 95% CI, 0.71–0.96;
P < 0.001).

Table 2. Changes in ER pathway activity scores upon AI treatment.

ER pathway activity Status Score Paired t test
All Active (%) Inactive (%) Mean SD Range (baseline vs. time point)

Baseline 38 (69%) 17 (31%) 46.9 8.9 (32.1, 69.9)
Two weeks 13 (24%) 42 (75%) 39.0 6.2 (26.9, 53.8) 7.9 (5.7, 10.2), <0.001
Three months 17 (31%) 38 (69%) 39.5 5.3 (27.6, 49.4) 7.5 (5.0, 9.9), <0.001

Stratified by response t test (R vs. NR)
Baseline

Responders (n ¼ 44) 34 (77%) 10 (23%) 48.2 8.9 (32.1, 69.9) 6.5 (1.2, 11.7), 0.02
Nonresponders (n ¼ 11) 4 (36%) 7 (64%) 41.8 7.0 (33.6, 53.2)

Two weeks
Responders 11 (25%) 33 (75%) 39.0 6.2 (26.9, 53.8) �0.1 (�3.9, 3.7), 0.95
Nonresponders 2 (18%) 9 (82%) 39.1 5.1 (28.1, 46.3)

Three months
Responders 14 (32%) 30 (68%) 39.6 4.8 (27.6, 48.3) 0.8 (�4.0, 5.7), 0.72
Nonresponders 3 (27%) 8 (72%) 38.8 7.0 (28.3, 49.4)

Decrease in ER pathway activity Direction Decrease in score
All Decrease Increase Mean SD Range

Baseline � two weeks 47 (85%) 8 (15%) 7.9 8.3 (�9.1, 25.0)
Baseline � three months 46 (84%) 9 (16%) 7.5 8.9 (�15.0, 28.0)
Two weeks � three months 22 (40%) 33 (60%) �0.47 4.9 (�12.0, 8.7)

Stratified by response t test (R vs. NR)
Baseline � two weeks

Responders 39 (89%) 5 (11%) 9.3 8.0 (�7.0, 25.0) 6.6 (1.3, 11.8), 0.02
Nonresponders 8 (73%) 3 (27%) 2.7 7.2 (�9.1, 13.0)

Baseline � three months
Responders 38 (86%) 6 (14%) 8.6 8.1 (�9.7, 28.0) 5.6 (�1.8, 13), 0.13
Nonresponders 6 (55%) 5 (45%) 2.9 11.0 (�15.0, 21.0)

Two weeks � three months
Responders 17 (39%) 27 (61%) �0.65 4.8 (�12.0, 8.7) �0.91 (�4.9, 3.0), 0.6
Nonresponders 5 (45%) 6 (55%) 0.26 5.6 (�7.6, 8.7)

Note: ER pathway activity score and decrease in activity score for the 55 complete cases of AffyA Edinburgh dataset (GSE20181, 44 responders and 11
nonresponders). t Tests reported as difference (CI), P value.
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This preset value is very close to 41.5, the best cut-off point obtained
by ROC analysis of the present dataset. Using the predefined 42.7
threshold, 69% of patients (n ¼ 38) had an active pretreatment ER
pathway. This proportion decreased to 24% (n¼ 13) after two weeks
and slightly increased to 31%(n¼17) after threemonths of treatment
(Table 2). At baseline, 77% (n ¼ 34) of clinical responders had an
active ER pathway, against only 36% (n ¼ 4) of nonresponders
(Table 2). Accordingly, a baseline ER pathway active state was
significantly associated with response to therapy (c2 P ¼
0.009; Table 2). Univariate logistic regression analysis reported a
protective OR of 0.17 (CI¼ 0.04–0.69; P¼ 0.01) on the dichotomous
active/inactive ER pathway activity status and a corresponding
protective OR of 0.35 (CI ¼ 0.13–0.95; P ¼ 0.02) for an increase in
10 points in the ERPAS. As reference, relation of response to
established markers (baseline tumor grade and ER Allred score) was
also analyzed (Supplementary Table S3). Although tumor grade was

associatedwith response to therapy (c2 test P¼ 0.03), ERAllred score
was not (c2 P ¼ 0.2). Sample size was small for reliable multivariate
analysis, but initial analysis indicated that the ERPAS remained
significant after adjustment for grade and Allred score (Supplemen-
tary Table S4).

Analysis of this cohort not only illustrated the expected decrease in
ER pathway activity upon effective letrozole treatment, but also that
roughly one third of ER-positive patients had a functionally inactive
ER pathway, associated with nonresponder status. Finally, in the first
two weeks of letrozole treatment, ERPAS decreased in the majority of
patients (85%, n ¼ 47), while between two weeks and three months,
ERPAS slightly increased in the majority of patients (60%, n ¼
33; Table 2). In line, the observed decrease in ERPAS from baseline
to twoweeks was higher in responders than nonresponders (9.3 vs. 2.7;
P ¼ 0.02), and remained higher in responders after three months of
treatment (8.6 vs. 2.9, P ¼ 0.13).

Figure 3.

ER pathway activity scores are signif-
icantly lower at baseline and 2 weeks
in nonresponding than responding
tumors in the AffyA Edinburgh
(GSE20181) dataset. ERpathway activ-
ity wasmeasuredwith the AffyAmod-
el.A, Individual patients’ line plot of ER
pathway activity scores at baseline
and after 2 weeks and 3 months of
treatment. Solid lines: Activity went
down during treatment. Dashed lines:
Activity went up during treatment.
B, ER pathway activity score as a func-
tion of treatment time for responders
(left, blue) and nonresponders (right,
red). C and D, Relationship between
ER pathway activity score at baseline
and decrease in activity score at 2
weeks (C; corr ¼ 0.74; 95% CI, 0.6–
0.84; P < 0.001) and at 3 months (D;
corr ¼ 0.83; 95% CI, 0.72–0.89; P <
0.001) of letrozole treatment (n¼ 55).
E, Box plots of ER pathway activity
score in responders and nonrespon-
ders at baseline. F, Decrease in ER
pathway activity score, between base-
line and 2 weeks (left) and between
baseline and 3 months (right) of treat-
ment. resp/blue: responders; nonresp/
red: nonresponders. ��� , t test P <
0.001; � , t test P < 0.05.
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TEAM IIa cohort
For the TEAM IIa cohort (Table 3), the average ERPAS was 42.2 at

baseline (n ¼ 49) and decreased to 33.9 (n ¼ 48) after exemestane
therapy. In the 28 paired samples (before and after therapy), mean
decrease inERPASwas 9.1 (paired t testP< 0.001). In this cohort, again
a positive butweak correlationwas found between baseline ERPAS and
decrease in ERPAS during treatment (corr ¼ 0.29; Supplementary
Fig. S6).

To test the value of the TEAMII PCR ER pathway model to predict
response to aromatase inhibitors (AI), activity scores were correlated
to decrease in tumor size assessed by manual palpation (Fig. 4D;
Supplementary Table S5). Patients with PD during exemestane treat-
ment had a significantly lower ERPAS at baseline (28.4, n ¼ 3)
compared with patients with non-PD (44.6, n ¼ 35); t test P ¼
0.03 (Supplementary Table S5, response assessed at lastmeasurement).
A relation between pretreatment ERPAS and clinical response was
already present at three months exemestane (non-PD ¼ 44.6, n ¼
27 vs. PD ¼ 28.7, n ¼ 3; P ¼ 0.04, Supplementary Table S5, response
assessed at 3 months).

Palpation-based response assessment was available for 23 patients
with corresponding paired biopsy/resection activity scores (Fig. 4A
and C). During exemestane treatment, ERPAS decreased in all six
patients with complete remission (CR). In two of seven patients with
partial response (PR) and in three of eight patients with stable disease
(SD), an increase in ERPAS was measured after neoadjuvant therapy,
indicating failure of blocking ER pathway activity at least at the time of
surgical resection. For the two patients with PD with available paired
samples, ERPAS was low before and had not changed after treatment.
Decrease in ERPAS was higher in non-PD (9.9, n ¼ 21) than PD
(�0.16, n¼ 2), paired t test P¼ 0.003 (Fig. 4C). Although ERPAS did
not differ significantly at baseline for CR, PR, and SD patients, a clear
distinction was observed between CR/PR and PDpatients (Fig. 4A). In
addition, decrease in ERPAS was larger in CR patients, becoming
gradually smaller in PR and SD patients (Fig. 4D).

For this cohort, available clinical data and sample size was too
limited for extensive analysis. However, brief examination of the
association of response to established risk markers did not indicate
any of the available markers were associated to PD, and ERPAS
remained associated to PD after adjustment.

NEWEST cohort
For the NEWEST cohort, Affymetrix data were only available from

biopsies prior to start of neoadjuvant fulvestrant. Data were analyzed
using the AffyP2 ERmodel (Fig. 4B). Baseline ERPASwas 28.7 in the 2

Table 3. ER pathway activity score at baseline and tumor resection for the TEAM IIa cohort.

Sample availability ER pathway activity score baseline Decrease baseline-resection Resection
Baseline only Paired Resection only n Mean SD Range n Mean SD Range n Mean SD Range

All 21 28 20 49 42.2 11.6 (9.9–62.2) 28 9.1 12.8 (�11.2–31.5) 48 33.9 14.0 (5.6–59.8)
Stratified by response assessed by palpation at last measurement

All 15 23 17 38 43.3 10.9 (18.9–62.2) 23 9.0 13.3 (�11.2–31.5) 40 32.6 13.5 (5.6–59.8)
CR 5 6 3 11 47.6 7.8 (38.9–62.2) 6 20.0 9.0 (7.1–27.7) 9 28.7 10.1 (13.4–46.1)
PR 5 7 8 12 41.8 13.0 (18.9–56.3) 7 6.4 11.7 (�9.2–25.4) 15 31.8 16.5 (5.6–59.8)
SD 4 8 5 12 44.5 9.1 (25.8–56.0) 8 5.4 15.2 (�11.2–31.5) 13 38.9 10.2 (20.3–54.4)
PD 1 2 1 3 28.4 6.5 (23.7–35.7) 2 �0.16 0.28 (0.35–0.04) 3 20.7 7.3 (12.4–26.1)

Note: Measurements are from the TEAMII PCR model. Decrease in ER pathway activity score was calculated for paired samples from the same patient. Sample
availability indicated as baseline only: number of patients with only a biopsy sample; paired: number of patients with paired biopsy and resection sample; resection
only: number of patients with only resection sample.
Abbreviation: n, number of samples available for pathway analysis.

Figure 4.

In patientswith progressive disease, ER pathway activity scores are significantly
lower and do not change after treatment. A, ER pathway activity score at
baseline in patients of theTEAM IIa cohortmeasuredwith theTEAMII PCRmodel.
B, ER pathway activity score at baseline in patients of the NEWEST cohort
measured with the AffyP2 model. C, TEAM IIa cohort individual ER pathway
activity score as function of treatment time. D, TEAM IIa cohort, decrease in ER
pathway activity score from baseline to tumor resection, stratified by response
assessed by palpation at last measurement. CR, blue: complete remission; PR,
green: partial remission; SD, orange: stable disease; PD, red: progressive disease.
Solid lines: Activity went down during treatment. Dashed lines: Activity went up
during treatment. ��� , t test P < 0.001; � , t test P < 0.05.
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PD samples versus 36.6 in the 37 non-PD patients (difference of 8.0
CI¼ 2.2–13.7; t test P¼ 0.02), similar to results of the TEAM IIa study.
Again, there was no significant difference in ERPAS between PR and
SD patients.

Relation between ER pathway activity and PR IHC staining
Combined ER/PR positive IHC staining is generally thought to be a

better indicator of response to endocrine treatment than ER status
alone. Therefore, combined positive stainingmight be amore accurate
predictor of an active ER pathway. Indeed, the PR positive biopsy
samples of the TEAM IIa cohort (n¼ 36, 73%) had significantly higher
ERPAS than the ERþ/PR� samples (48.7 vs. 34.3, two sample t test P¼
0.003) and the decrease in ERPAS after treatment was larger in the
ERþ/PRþ group, although this did not reach significance (Supple-
mentary Table S6). However, baseline PR protein staining alone did
not correlate with response to AI therapy, neither in the TEAM IIa
cohort (this study) nor in the Edinburgh cohort (reported in ref. 38).

Mutation analysis of ESR1 and PIK3CA genes in TEAM IIa cohort
ESR1 and PIK3CA mutations could be assessed in 15 samples (13

patients) of the TEAM IIa study (Supplementary Figs. S7 and S8);
remaining samples were of insufficient quality. Although nonsynon-
ymous ERS1 SNVswere only found in patients with partial response or
stable disease (Supplementary Table S7), no literature evidence as to
their functionality was found. A known PIK3CA (H1047R) activating
mutation was detected in one CR and one SD patient.

Discussion
We previously described the development of a new method to

quantitatively measure activity of the ER pathway in a tissue sample
using a computational model that interprets measured ER target gene
mRNA levels (15). In the current study, its use to predict response to
neoadjuvant endocrine treatment in patients with ER-positive breast
cancer was evaluated, analyzing two clinical studies from Edin-
burgh (14, 22), the Dutch TEAM IIa cohort (25), and the NEWEST
study (24). For this purpose, the ER pathway model was adjusted to
match sensitivity to E2 concentrations in cancer tissue, and adapted to
the different mRNA measurement platforms used in these clinical
studies. After freezing the models, analysis of the independent patient
cohorts was performed to provide per sample a quantitative ERPAS.

Endocrine treatment reduced ER pathway activity
In all three clinical studies for which pre- and posttreatment data

were available, endocrine treatment induced a decrease in ERPAS, and
the decrease was already maximal after two weeks of treatment. In the
studies for which clinical response data were available, the ERPAS
prior to treatment correlated with clinical response. In the AffyA
Edinburgh cohort, a high ERPASwas associated with favorable clinical
response to letrozole. In the TEAM IIa and NEWEST studies, a low
ERPAS was associated with progressive disease under exemestane and
fulvestrant treatment, respectively. In general, patients with higher
activity scores responded better to endocrine treatment than patients
with lower activity scores, and treatment-induced decrease in ERPAS
was largest in clinical responders and smallest in progressive disease
patients. These observations are in accordance with broad evidence
that AI and fulvestrant therapies are effective in patients with an active
ER pathway driving tumor growth, by interfering with production of
estradiol, and by blocking of ER transcriptional activity and degrading
ER, respectively (9, 39). An inactive or minimally active ER pathway is
expected to be associated with primary resistance and progressive

disease under endocrine therapy, as we observed. Results are also in
line with our earlier finding that patients with ER-positive breast
cancer with low ERPASs, treated with adjuvant tamoxifen, have a
shorter relapse-free survival (15).

In the TEAM IIa study, ERPAS was not significantly different
among the CR, PR, and SD groups. A contributing factor may have
been inaccuracy in assessment of tumor size by manual palpation,
which was performed by differentMDs at nonfixed time points during
treatment. Nevertheless, a detailed comparison of tumor size at
resection versus estimated size by palpation, mammography, US, and
MRI in the TEAM IIa cohort suggested palpation as most accurate
measurement method (40). In addition, in the NEWEST study, three-
dimensional ultrasound assessment of tumor volume was used to
assess clinical response, and again, a low ERPAS was associated with
PD, while ERPAS could not statistically separate PR and SD. However,
in both clinical studies, best responder patients (respectively CR and
PR) were clearly distinguishable from PD patients by higher activity
scores.

Positive ER/PR IHC staining is generally thought to be a more
reliable indicator of response to endocrine therapy than positive ER
staining alone. However, although PR staining did correlate ERPAS, it
did not correlate with response to AI, indicating that combined ER/PR
IHC alone is insufficient to decide on an active ER pathway and
endocrine treatment, in agreement with clinical experience (41). This
is likely due to the indirect relationship between ER transcriptional
activity and expression level of the actual PR protein (42).

The Allred score for ER IHC staining has also been described as a
predictive marker for neoadjuvant hormonal therapy response, with
improved response at Allred scores higher than 5 (1). In the AffyA
Edinburgh cohort for which this score was available, no relation with
response to therapy was found, probably due to intentional preselec-
tion bias toward high Allred scores to enrich the responders
group (38).

Persistent ER pathway activity under AI treatment
In a subgroup of patients from the AffyA Edinburgh and TEAM IIa

cohorts (16% and 25%, respectively), ERPAS had increased at the end
of AI treatment, indicating failure of blocking ER pathway activity, at
least at the time of surgical resection or last biopsy. Possible explana-
tions formeasuring persistent ER pathway activity under AI are lack of
compliance, stopping therapy prior to surgical resection, tumor het-
erogeneity, and emerging endocrine resistance. In both studies,
patients were followed closely and compliance was estimated as high
by the treating oncologists; however, noncompliance cannot be
excluded with certainty. Tumor heterogeneity with respect to ER
active and ER inactive cancer cell clones is another explanation, as
shown recently in a preliminary study (43). A side study comparing
activity scores in different areas of resected tumor from six TEAM IIa
patients showed a variation in the ERPAS of 9 points or more in four
patients (Supplementary Fig. S9). Resistance mechanisms such as ER
activating mutations and activation of other tumor driving signaling
pathways are well-known consequences of endocrine therapy, and the
incidence of ER-activating mutations lies around 12% after treatment
with aromatase inhibitors (44, 45). The observed increase in ERPAS
between two weeks and three months treatment in the AffyA Edin-
burgh study, especially in patients with an initial reduction in activity
score, is suggestive of ER-activating ESR1mutations, unfortunately, no
mutation information was available. In the TEAM IIa study, due to
lack of sufficient tissue, ESR1mutations could only be assessed in a few
samples by targeted sequencing and only ESR1 SNVs with unknown
functionality and unrelated to AI resistance or clinical response were
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identified. Sequencing of PIK3CA mutations revealed two known
PIK3CA activating mutations, also without relation to response. These
results emphasize the challenge of interpreting mutations with respect
to functional impact, in line with recent clinical findings (46).

ER pathway model performance using different mRNA
measurement techniques

An important reason for successful adaptation of the ER pathway
model to other mRNA measurement platforms than the original
AffymetrixU133Plus2.0, is the Bayesian network model approach
based on causal relationships between the ER transcription factor and
well-established ER target genes (15, 16). The differences between this
knowledge-based approach to develop signaling pathway tests, and
data-driven methods, have been described and discussed
before (15, 19, 47, 48). In brief, data-driven efforts to generate pathway
gene expression signatures, such as gene set enrichment analysis and
DAVID, have been typically based on discovery of noncausal associa-
tions between expressed genes and a pathway, by analyzing datasets
with more or less specified relationships to the pathway (49, 50). Such
methods are prone to finding spurious associations and carry a high
risk of overfitting, which interferes with biological validation and
performance on independent datasets and with adaptation to other
gene measurement platforms (51). In contrast, the Bayesian ER
pathway model was biologically validated, can calculate the ERPAS
of an individual sample despite variations in the expressed target gene
subset, and its performance is relatively independent of mRNA
measurement platform used. The latter is illustrated by the highly
comparable results obtained by analysis of the different patient
cohorts, where ERPAS was measured using different mRNA mea-
surement platforms. For example in the TEAM IIa and NEWEST
cohorts, a low ERPAS predicted progressive disease under endocrine
therapy, irrespective of being measured on fresh-frozen samples with
Affymetrix microarrays, or on FFPE samples with qRT-PCR.

Predicting response to endocrine therapy
Despite strongly positive ER staining, some patients fail to respond

to neoadjuvant endocrine therapy, potentially resulting in progressive
disease. By measuring ER pathway activity, we were able to identify
such patients based on their low ERPAS. By providing additional
evidence that ER-positive breast cancers do not always have high ER
pathway activity, we provide a rational explanation for the clinical
issue of nonresponders. Analysis of three independent clinical breast
cancer cohorts confirmed the potential value of measuring functional
ER pathway activity to predict response to endocrine therapy. The
Bayesian computational models for ER pathway activity, adapted to
different measurement platforms, revealed comparable clinical results
on fresh-frozen tissue as well as FFPE samples. The ERPAS has clinical
value as a continuous measure: the higher the score, the more likely

that the ER pathway was active in the analyzed sample and the more
likely that the patient responded to antihormonal treatment. In a
clinical sample consisting of amixture of cells, an absolute ER pathway
activity threshold is arbitrary, because the activity score represents
averaged ER pathway activity in the cell mixture, thus depending on
percentage of cancer cells and their level of ER pathway activity. In the
future, a clinically useful approach might be the use of tertiles of
activity scores, allowing middle tertile scores to indicate uncertain
treatment response.

The frequently extremely small FFPE samples from pretreatment
biopsies reflect the routine diagnostic situation and are a point of
concern. Current developments are directed toward improvement of
signaling pathway analysis on such samples. Further clinical validation
of the ERpathway test is ongoing, aswell as elucidating the role of other
signaling pathways, such as the PI3K pathway, in hormonal
resistance (19, 48).
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