Malignant Hyperthermia: What the ICU Needs to Know
Objectives

1. Compare the pathophysiology of malignant hyperthermia (MH) with presenting signs/symptoms in a critical care environment.

2. Identify critical, time based interventions that will stop progression of the MH crisis and reverse potential adverse effects to the patient.
What is Malignant Hyperthermia?

1. A disorder of cellular metabolism
2. Triggered by inhaled anesthetics or succinylcholine
3. A potentially fatal disorder if not treated promptly
4. All of the above
Question #1

What is Malignant Hyperthermia?

1. A disorder of cellular metabolism
2. Triggered by inhaled anesthetics or succinylcholine
3. A potentially fatal disorder if not treated promptly
4. All of the above
What is Malignant Hyperthermia (MH)?

• A rare but potentially fatal inherited disorder of skeletal muscle metabolism that leads to a hypermetabolic crisis

• MH only occurs in *susceptible individuals* following exposure to “triggering agents”

• Prompt recognition and treatment will reduce morbidity and mortality, but recognition can be challenging
Who is Affected?

- Any age, racial heritage, or gender
 - Most common in age < 18 and males
- MH is an inherited, autosomal dominant trait
 - Present in 1:3000 - 1:8,500 patients
 - MH incidence during anesthesia 1:100,000 surgeries
- Disorder of calcium metabolism in skeletal muscles
 - Incessant muscle activation / contraction occurs following exposure to a triggering agent
Question #2

Which of the following agents do NOT trigger an MH response?

1. Inhaled anesthetics: isoflurane, sevoflurane, desflurane
2. Succinylcholine
3. Propofol
4. None of the above
Question #2

Which of the following agents do NOT trigger an MH response?

1. Inhaled anesthetics: isoflurane, sevoflurane, desflurane
2. Succinylcholine
3. Propofol
4. None of the above
Triggering Agents for an MH Crisis

<table>
<thead>
<tr>
<th>Volatile Anesthetics</th>
<th>Non-Triggering Agents (safe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>◦ Halothane</td>
<td>◦ Barbiturates</td>
</tr>
<tr>
<td>◦ Isoflurane</td>
<td>◦ Benzodiazepines</td>
</tr>
<tr>
<td>◦ Sevoflurane</td>
<td>◦ Opioids</td>
</tr>
<tr>
<td>◦ Desflurane</td>
<td>◦ Nitrous Oxide</td>
</tr>
<tr>
<td>◦ Enflurane</td>
<td>◦ Etomidate</td>
</tr>
<tr>
<td>◦ Methoxyflurane</td>
<td>◦ Ketamine</td>
</tr>
<tr>
<td>◦ Succinylcholine</td>
<td>◦ Propofol</td>
</tr>
</tbody>
</table>

Skeletal Muscle Relaxant

- Nondepolarizing muscle relaxants (pancuronium)
Pathophysiology of MH

- A cellular disruption of calcium hemostasis in skeletal muscle
- Defective ryanodine receptors lead to prolonged release of Ca$^{++}$ from the sarcoplasmic reticulum following a “trigger”
- Activation of contractile filaments persists with muscle rigidity
- Hypermetabolic state leads to:
 - Increased O2 consumption
 - Increased CO2 production
 - Lactic acidosis

Pathophysiology of Malignant Hyperthermia

- Exhaustion of cellular metabolism and loss of membrane integrity eventually leads to:
 - Hyperkalemia
 - Acidosis: respiratory and metabolic (lactate)
 - Creatine kinase release
 - Myoglobinuria
Question #3

Which of the following best describes the *initial presentation* of Malignant Hyperthermia?

1. Hypercapnia and severe hyperthermia are present in the majority of patients
2. Tachycardia and acidosis are present in the majority of patients
3. Mild and non-specific sinus tachycardia, muscle rigidity, and/or hypercarbia are often presenting signs
4. Life threatening arrhythmias often signal MH onset
Question #3

Which of the following best describes the *initial presentation* of Malignant Hyperthermia?

1. Hypercapnia and severe hyperthermia are present in the majority of patients
2. Tachycardia and acidosis are present in the majority of patients
3. Mild and non-specific sinus tachycardia, muscle rigidity, and/or hypercarbia are often presenting signs
4. Life threatening arrhythmias often signal MH onset
Clinical Presentation of MH

• Highly variable, non-specific responses:
 – aborted course with mild symptoms that resolves after brief exposure, often unrecognized
 – fulminant MH crisis with severe hypermetabolic reaction and life threatening complications

• Average of 3 exposures before a crisis

• *Do not ignore*: sinus tachycardia & increased ETCO$_2$

Clinical Changes in MH

Anesthesia triggers a cascade of clinical events that begin with the skeletal muscles.

Anesthetic Trigger

- Contracture
- Hypermetabolism
- Heat
- Hypoxia-Hypercapnia-Acidosis
- Rhabdomyolysis

- Myoglobin↑
- CK↑
- K+↑
- Tachycardia
- Renal failure
- Cardiac arrhythmia
- Cerebral damage

Prompt treatment with Dantrolene will stop this process.
Clinical Indicators of MH

• EARLY
 – Masseter spasm (jaw/trunk)
 – Generalized rigidity (50-80%)
 – Tachycardia (>80%)
 – Hypercapnia / ↑ETCO₂
 – Hypoxia
 – Combined respiratory & metabolic acidosis

• LATE
 – Hyperthermia
 – Rhabdomyolysis
 – Acute renal failure
 – Cardiac dysrhythmias
 – Hypotension
 – Circulatory failure
 – DIC

Why The Diagnosis of MH is Challenging

• Rising \(\text{ETCO}_2 \) is a highly reliable indicator but is often masked by ventilatory adjustments to lower it.

• **Masseter muscle spasm** - rigidity of jaw, trunk, or generalized is attributed to shivering or anesthesia recovery.

• **Dysrhythmias** – Sinus tachy, PVC’s, bigeminy mistaken for inadequate anesthesia/sedation, pain, fever, etc.

• **Temperature increase** – occurs late, *rate of temperature rise* is most critical (up to 1-2° every 5 minutes).
Time is of the essence . . .

Mortality occurs rapidly from cardiovascular collapse and dysrhythmias

If you suspect MH then act immediately – call for help!

Immediately obtain an MH cart from an OR or L&D unit

Supportive care until MH rescue medication Dantrolene is available
Priorities in the *initial* management of Malignant Hyperthermia include:

1. Stop triggering agent, obtain MH cart, give dantrolene
2. Stop procedure, cool patient, initiate hydration
3. Hyperventilate, initiate cooling, initiate NG lavage
4. Initiate hydration, correct acidosis, initiate cooling
Question #4

Priorities in the initial management of Malignant Hyperthermia include:

1. Stop triggering agent, obtain MH cart, give dantrolene
2. Stop procedure, cool patient, initiate hydration
3. Hyperventilate, initiate cooling, initiate NG lavage
4. Initiate hydration, correct acidosis, initiate cooling
Treatment of Acute MH Crisis

1. During a procedure: alert provider to halt

2. Discontinue triggering agent, if present

3. Call for Help! Bring MH and Crash Carts

4. Hyperventilate with 100% \(O_2 \) \(\geq 10 \text{L/min} \)

5. Dantrolene 2.5 mg/kg administer rapidly

6. Initiate Cooling internal / surface

7. Monitor ETCO\(_2\), HR, Temp response

If unsure of diagnosis or have questions-call the MH Hotline 1-800-644-9737 (1-800-MH HYPER)
Rescue Medication: Dantrolene versus Ryanodex

<table>
<thead>
<tr>
<th></th>
<th>Dantrolene (old)</th>
<th>Ryanodex (new)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment dose</td>
<td>2.5 mg/kg</td>
<td>2.5 mg/kg</td>
</tr>
<tr>
<td>Dosage per vial</td>
<td>20 mg</td>
<td>250 mg</td>
</tr>
<tr>
<td>Diluent: Sterile H₂O</td>
<td>60 mL/vial</td>
<td>5 mL/vial</td>
</tr>
<tr>
<td></td>
<td>preservative free</td>
<td></td>
</tr>
<tr>
<td>Vials per cart</td>
<td>36</td>
<td>3</td>
</tr>
<tr>
<td>Mannitol concentration</td>
<td>3000 mg/vial</td>
<td>125 mg/vial</td>
</tr>
<tr>
<td>pH</td>
<td>-9.5</td>
<td>-10.3</td>
</tr>
</tbody>
</table>

DOSAGE is the same - Ryanodex requires only 1 or 2 vials, with less diluent
MH Rescue Medication

• **What is it** - Rapid acting skeletal muscle relaxant

• **Weight Based Dosing the Same**
 • Crisis: 2.5 mg/kg (1 vial = 20 mg Dantrolene, 250mg Ryanodex)
 • Repeat q 5-10 min until symptoms subside (max 10 mg/kg)

• **Administration:**
 • Reconstitute each vial with *preservative free sterile water (no D_5 W/NS)*
 • Agitate gently until a uniform color (longer preparation with Dantrolene)
 • Administer rapid IV push, clear line to ensure no residual

• **Redosing:**
 • Recurrence in 25% of patients; repeat 1 mg/kg IV q 6 hrs x 24 hrs
Ongoing Treatment Priorities

Supportive Care
- Cool Patient
 - IV fluids, internal lavage
 - Surface cooling
 - Stop when temp 38.5°C
- Maintain UO > 2 ml/kg/hr
- Correct K, ABG, CPK

Monitoring
- Lab Values:
 - ABG, K⁺, CA++, glucose
 - CPK
 - Coag panel
- Continuous ECG, BP, ETCO₂
- Compartment syndrome
How To Be Prepared

• Watch for signs and symptoms
• Know where the MH Carts are
• Know what’s in the MH cart
• Know how to access MHAUS
• Practice drills in your unit
MH Cart Recommendations: Meds

- Ryanodex (3) or Dantrolene (36)
- Sterile H₂O for injection
- Sodium bicarb – 8.4% 50-mL (5)
- D50 – 50 mL (2)
- CaCl – 10% 10-mL (2)
- Regular insulin 100-mL (1)
- Lidocaine or amiodarone
- Refrigerated NS (3-L) for IV cooling
Key Indicators of Patient Stability

- **ETCO$_2$ is declining or normal**
- **HR is stable or decreasing**
- **Temperature is declining**
- **Generalized muscular rigidity is resolving, if present**
- **No ominous dysrhythmias**
Responding to an MH Crisis

Recognize Signs and Symptoms (may be subtle or unclear)

Get Help! Bring MH and Crash Cart to area immediately

Begin supportive care
- discontinue trigger
- initiate cooling
- monitoring & tests

Administer Dantrolene or Ryanodex as soon as available
Summary

• Mortality from MH fell from 70% to 5% with the introduction of dantrolene, but has risen to 14% since 2000
• MH may appear at any time during anesthetic exposure and up to 24 hours afterwards
• Rapid recognition and management are essential to prevent morbidity and mortality
• Help and assistance are available 24/7 via the MH hotline

1-800-MH-HYPER
References

- Malignant Hyperthermia Association of the US www.mhaus.org.