

Taking NIV Further

NIV - Goals for Use

- Avoid intubation
- Increase PaO2
- Decrease PaCO2
- Alleviate dyspnea
- Decrease WOB
 - Not to impose extra WOB due to the presence of changing leaks
- Unloading the respiratory muscles allowing them to rest
- Increase alveolar ventilation

Hypercarbic ARF

Hypoxemic ARF

Indications

- *"When feasible and not medically contraindicated, <u>use noninvasive positive-</u> <u>pressure ventilation</u> delivered continuously by face or nose mask, <u>instead of</u> <u>performing endotracheal intubation</u> in patients who are in respiratory failure and are not needing immediate intubation."*
- "When feasible and not medically contraindicated, <u>use NIV as part of the</u> <u>weaning process</u>..."

CDC 2004 Guidelines for Preventing Health-Care Associated Pneumonia

CDC MMWR Mar 2004; 53: RR-3

Patient Selection Considerations in Acute Applications

<u>Strong evidence</u>

- CHF
- COPD exacerbation
- Facilitating weaning of COPD
- Immunocompromised patients

Weak evidence

- Partial UAW obstruction
- ARDS
- Trauma

Moderately strong evidence

- Asthma
- Cystic Fibrosis
- Postoperative RF
- Avoidance of extubation failure
- DNI patients

Strong = multiple controlled trials

Moderately strong = single controlled trial or multiple case series

Weak = a few case series or case reports

Physiologic criteria for NIV consideration

- Moderate to severe respiratory distress
- Tachypnea (RR > 24 BPM)
- Use of accessory muscle or paradoxical abdominal breathing
- Gas exchange
 - -pH < 7.35
 - $-PaCO_2 > 45 \text{ mm Hg}$
 - $-PaO_2$:FiO₂ < 200 mm Hg

NIV – Contraindications

- Patient is not breathing spontaneously
- Patient's airway is compromised
- Cardiovascular problems
- Patient is unable to clear secretions
- No improvement on NIV in first two hours of implementation
- Unable to adapt a mask interface
- Uncooperative patient

IPAP

- Adjust IPAP to Establish Pressure Support
- PS = IPAP EPAP
- Augment Ventilation
 - -Increase tidal volume
 - -Decrease CO2
- Relieve dyspnea
- Rest respiratory muscles
 - –Reduce work of breathing

EPAP

- EPAP = PEEP
- Increase FRC
 - –Improve oxygenation
 - -Reduce work associated with Auto PEEP
 - -Stabilize upper airway (OSA)

BiPAP

Changes In EPAP Pressure

Taking NIV further

The **Respironics V60** Ventilator gives you the confidence to treat a wider range of patients

V60 NIV Modes

Active Mode: S/T					
IPAP 12 cmH20	Rate 12 BPM	e I-Ti 1.	i me 00	Rise 2	OFF
EPAP 4 cmH20	02 22 ⊮				
S/T Settings	Alarm Settings	Modes	Menu	Standb	y % ?

• ST

• AVAPS

• CPAP with C-Flex

What is S/T (Spontaneous Timed)?

- In S/T ventilation, a set IPAP pressure and a set EPAP pressure is delivered to the patient
 - The patient controls the inspiratory time
 - In the S/T mode, a timed breath is only delivered if the patient rate drops below the set backup rate.
 - A mandatory breath is only delivered at a set I-Time when the patient doesn't meet the rate.

Pressure Support Ventilation – S/T

Pressure Support Ventilation (PSV) Inspiratory Time depends on patient breathing pattern $T_1 \neq T_2$

Patient or machine triggered
Flow cycled if spontaneous breath
Time cycled if machine triggered
breath

- •TV is variable depending:
 - Pressure support level
 - > Inspiratory time

ST Pressure Waveform

Average Volume Assured Pressure Support AVAPS

AVAPS

- What is AVAPS
 - -Average volume-assured pressure support
 - Vent automatically modifies pressure to maintain an average target user-defined VT
 - 1 cmH₂O to possibly 2.5 cmH₂O per minute change in pressure per minute
 - During AVAPS setup, there may be a period of time before the target tidal volume is achieved
 - AVAPS should not be used when rapid IPAP adjustments are needed to achieve the desired VT

- This mode is not a PRVC type mode

 It will not respond quickly
- Not intended for patients with high resistance and low compliance
 - -Patients should be through their acute phase
- It is ideal for stabilized chronic patients
- Do not use a nasal mask when in the AVAPS mode

AVAPS - Setup

• AVAPS-specific settings: target VT, Min P, and Max P

- Min P (which is the minimum IPAP pressure)
- Max P (maximum IPAP pressure).

The best way: observe the set EPAP/IPAP and Vt readings on S/T mode.

Set Min P at what IPAP value was on S/T.

Set Max P above Min P so that the patient will be able to achieve an increased flow/pressure when needed.

If calculated target pressure is outside Min P or Max P range, the target tidal volume will not be achieved.

Principles of Operation

PHILIPS

Average volume-assured pressure support

AVAPS automatically adapts pressure support (< $2.5 \text{ cmH}_2\text{O}$) per minute to guarantee an average tidal volume

AVAPS alarm

- If target VT is not achieved due to insufficient Max P
 - Information message will appear
 - You have to set a
 Low VT alarm in order
 to have an audible alert
 - Low VT delayed for 2 minutes after activation of AVAPS

AVAPS alarms

- If target VT is exceeded due to Min P set too high
 - Information message will appear
 - You have to set a a high VT alarm to have an audible alert

EPAP relative to Min P

EPAP is limited to values less than Min P – 1 cmH₂0

In this example Min P must be \uparrow before EPAP can be \uparrow

AVAPS

- Neuromuscular disorders
 - -With standard bi-level therapy, a patient's tidal volume declines as disease process worsens
- Restrictive thoracic disorder
 - -Chest wall deformities (e.g. kyphoscoliosis)
 - -Slow progressive disease
- Obesity hypo-ventilation syndrome
 - -A change in body position increases airway resistance
 - -Without an increase in pressure support, VT declines
- In short, any chronic disease process that is past the acute phase (e.g. COPD, CHF)

CPAP with C-flex

CPAP (Continuous Positive Airway Pressure)

What is C-Flex?

- C-Flex is an option on the V60
 - Only available in CPAP Mode
- C-Flex enhances traditional CPAP by reducing the pressure at the beginning of exhalation
 - This is when patients are often uncomfortable with CPAP
 - C-Flex returns to the set CPAP pressure before the end of exhalation
- Should not be used in patients requiring CPAP for oxygenation purposes

- The amount of pressure relief is determined by the C-Flex setting and the expiratory flow of the patient
 - The higher the setting number (1, 2 or 3)
 - And the greater the expiratory flow
 - The greater the pressure relief
 - ^o During the active part of exhalation only

Reduces pressure at the beginning of exhalation and returns to therapeutic pressure just before inhalation

Pressure relief varies on flow and C-Flex setting

ORIGINAL ARTICLE

Longitudinal comparison study of pressure relief (C-FlexTM) vs. CPAP in OSA patients

Diana C. Dolan • Renata Okonkwo • Florian Gfullner • J. Randall Hansbrough • Richard J. Strobel • Leon Rosenthal

□ CPAP ■ C-Flex

Fig. 2 Comparison of the ratings on the VAS scores by treatment. Possible scores range from 0 to 100. There was a main effect of mask comfort (p=.01)

C-Flex support literature

Sleep Breath (2008) 12:393-396 DOI 10.1007/s11325-008-0189-3

SHORT COMMUNICATION

Randomised trial of compliance with flexible (C-Flex) and standard continuous positive airway pressure for severe obstructive sleep apnea

Nathaniel S. Marshall · Alister M. Neill · Angela J. Campbell

> This randomised trial provides some evidence that C-Flex might increase initial treatment compliance, compared to CPAP, in patients with severe OSA. However, this trend toward greater compliance was not associated with better short-term treatment outcomes for patients. These findings need to be confirmed in a larger, longer-term trial.

C-Flex support literature

Sleep Breath (2007) 11:31-37 DOI 10.1007/s11325-006-0078-6

ORIGINAL ARTICLE

Efficacy and patient satisfaction with autoadjusting CPAP with variable expiratory pressure vs standard CPAP: a two-night randomized crossover trial

A. T. Mulgrew • R. Cheema • J. Fleetham • C. F. Ryan • N. T. Ayas

C-Flex eliminates sleep disordered breathing as effectively as standard CPAP. Patients indicated a preference for APAP with C-Flex suggesting a possible advantage in terms of patient adherence for this mode of treatment. C-Flex support literature

Treatment Adherence and Outcomes in Flexible vs Standard Continuous Positive Airway Pressure Therapy*

Mark S. Aloia, PhD; Michael Stanchina, MD; J. Todd Arnedt, PhD; Atul Malhotra, MD, FCCP; and Richard P. Millman, MD, FCCP

Conclusions: Therapy with the C-Flex device may improve overall adherence over 3 months compared to standard therapy with CPAP. Clinical outcomes do not improve consistently, but C-Flex users may be more confident about their ability to adhere to treatment. Randomized clinical trials are needed to replicate these findings. (CHEST 2005; 127:2085-2093)

C-Flex: Potential new indications

• Acute settings

- Acute respiratory failure in OSAS
- Acute respiratory failure in OHS
- Chronic settings
 - OSAS to improve tolerance and use
- •Should not be used in patients requiring CPAP for oxygenation purposes

Just remember – it's CPAP!

Keys to success

The ideal NIV therapy experience

- Trained staff
- Appropriate mask selection
- Patient-to-ventilator synchrony
 - -Optimum mask and ventilator performance
 - -System compatibility
- Patient compliance
- Patient coaching and earning trust
- Wound Care Nurse, Nurse, RT
- Mask Fitting workshops

Patient Selection

FAVORABLE DIAGNOSES Strong Evidence

- COPD exacerbation
- Acute pulmonary edema / CHF
- Immunocompromised patients
- · Facilitate weaning of COPD patients

Intermediate Evidence

- Asthma
- Community-acquired pneumonia in COPD patients
- COPD & CHF patients with DNR/DNI status
- Post-operative respiratory failure (lung resection, bariatric, CABG)

Weaker Evidence (CAUTION)

- ARDS with single-organ involvement
 Community-acquired pneumonia
- (non-COPD patients)
- Cystic fibrosis
- Neuromuscular disease/scoliosis
- OSA/obesity hypoventilation
- Upper airway obstruction

UNFAVORABLE DIAGNOSES

- End-stage pulmonary fibrosis
- Severe ARDS (multi-organ failure)
- Upper-airway or esophageal surgery
- Upper-airway obstruction with high risk for occlusion

CONTRAINDICATED

- Cardiac/respiratory arrest
 Medically unstable
 (hypotensive shock, uncontrolled
- cardiac ischemia or arrhythmias)
 Unable to protect airway
- (impaired cough or swallowing) • Excessive secretions
- Facial surgery, trauma, burns, or deformity preventing mask fit
 Severe UGI bleeding
- Agitated or uncooperative
- Untreated pneumothorax
- Multi-organ system failure

If unfavorable diagnosis or a contraindication is present, consider intubation.

3

SIGNS AND SYMPTOMS

If a spontaneously breathing patient with moderate to severe respiratory distress presents with one or more of the following consider NIV:

- · Accessory muscle use
- Paradoxical breathing
- RR > 24 (hypercapnic)
- RR > 30 (hypoxemic)

If not, consider other therapy

GAS EXCHANGE CRITERIA

4

If patient falls within the criteria below, initiate NIV (do not await ABG results in severely dyspneic patient): • PaCO₂ ≥ 45 mm Hg (hypercapnic)

- Pacoy ≥ 40 mm ng (nypercapino
 pH 7.10 7.35
- Hypoxemic respiratory failure with PaO₂/FiO₂ < 300

If acuity increases, consider intubation (especially if SAPS II ≥ 34 or P/F < 100)

Adaptation

TITRATE PRESSURES TO MEET VENTILATION NEEDS

2

ADJUST IPAP OR PSV IF: PERSISTENT RR > 24, ELEVATION OF PaCO₂, RESPIRATORY DISTRESS OR EXCESSIVE USE OF NECK MUSCLES

- Increase IPAP by 2-3 cm H₂O q 5 -10 minutes as tolerated
- If intolerant, check for air leak and/or poor mask fit (a small leak is OK)
- If patient is still intolerant of increased pressure, consider lowering inspiratory pressure

Optimize Patient-Ventilator Synchrony

- · Coach breathing with the ventilator
- Minimize air leaks
- Optimize rise time (if available)
- Increase EPAP (If auto-PEEP)
- If synchrony remains poor, consider conscious sedation
- · If delayed cycling, limit inspiratory time

ADJUST EPAP or PEEP (and IPAP or PSV)

If:

3

- Inadequate oxygenation
- Significant auto-PEEP

Then:

- Increase EPAP by 1-2 cm H₂O q 5 minutes, watching FiO₂/effort
- Titrate FiO₂ or oxygen flow to maintain 0₂ Sats > 90%
- May lower EPAP if intolerant but not < 4 cm H₂O

Note: When increasing EPAP, increase IPAP by same amount to maintain same level of pressure support (for uncompensated PEEP ventilators)

Over

PhysicianCourse.

Copyright © 2007 by Nicholas Hill, M.D. Used in accordance with license granted to Respironica®, Inc.

Monitoring

2

MONITOR & DOCUMENT

5

- Patient comfort and tolerance
- Vital signs, especially respiratory rate
- Neck muscle activity
- Interface fit and air leaking
 Patient/ventilator synchrony
- Tidal volume (6-7 ml/Kg)
- · Continuous pulse oximetry
- ABG at baseline, after 1-2 hours and then as needed

PREDICTORS OF SUCCESS

- Lower SAPSII / APACHE II score
- Willing and able to cooperate
 Good mask fit
- RR < 36/min, decreased WOB
- Improvements in gas exchange, pH, HR, RR in the first 2 hours

IF NO IMPROVEMENT AFTER 2-3 HOURS, STRONGLY CONSIDER USE OF INVASIVE MECHANICAL VENTILATION.

(Continued)

Weaning CONTINUE MONITORING 2 · Frequently reassess alarms and ventilator settings · Assess if patient meets weaning WEANING guidelines, including clinical stability, · Attempt trial off NIV with O2 adequate response of underlying disease, $RR \le 24$, $HR \le 110$ b/m, adjusted for sat ≥ 90% and gradually extend weaning periods as tolerated compensated pH ≥ 7.35, O₂ sats · Resume use of NIV if initiation $\geq 90\%$ on $\leq 50\%~$ FiO_2 or $6~l/m~O_2$ criteria return -OR-Slowly titrate IPAP or PSV Downward by 2-3 cm H₂O as tolerated 3

Does Patient Demonstrate Clinical Evidence of Respiratory Distress? (outlined on reverse side) Yes No Restart NIV Discontinue

CONTINUE OR D/C NIV

